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Dimensional Analysis in Mathematical
Modeling Systems

A Simple Numerical Method

Hemant K. Bhargava

Naval Postgraduate School
Code 54BH

Monterey, CA 93943-5000

February 7, 1991

Abstract

This paper discusses dimensional manipulation, essentially a prob-
lem requiring symbolic mathematics techniques, using a numerical ap-
proach. The numerical method obeys the laws of dimensional arith-
metic. This is achieved by specifying an encoding of units of measure-
ment as prime numbers, and manipulating the resulting expressions
numerically. The unique factorization theorem is applied to show that
this method makes trivial the problems of dimensional simplification
and verification of dimensional equivalency, which are central issues
in dimensional arithmetic. The solution has immediate application in
mathematical modeling systems, chiefly in the model validation and
model solution phases.



1 Introduction

This paper presents an efficient and simple numerical method for dimensional

arithmetic. The problem of dimensional manipulation can be viewed as one

of symbolic mathematics [25, 26, 17], since dimensions (quantities, units of

measurement, see §2) are non-numeric symbols. However, we transform it to

a simple numerical problem, and develop an algorithm for this transformed

problem. There are three key steps in this approach. First, we recognize

the special nature of the laws of dimensional arithmetic. Second, we de-

velop a prime-encoding of dimensions, in which each unit of measurement is

represented by a prime number. Third, we apply the unique factorization

theorem from number theory to show that numeric arithmetic applied to this

prime-encoding obeys the laws of dimensional arithmetic.

Dimensional arithmetic, or the calculus of dimensions, involves operations

on dimensions analogous to the arithmetic operations on numbers. The tech-

niques required to perform dimensional arithmetic as a symbolic mathematics

problem are implemented in several compiter algebra programs (e.g., Mac-

syma [19], Reduce [20], and Mathematica [29]). For example, such systems

can prove that (a' + ab + b2 + ba) = (a + b) 2 . With some effort, since the

laws of physical algebra are a minor variant on those of standard arithmetic

performed on numbers [23], dimensional arithmetic can be, and ha.- been,

performed using these systems. Our alternative, numerical, m,,iod does

not require specialized symbolic manipulation techniques, and has been used

in implementing features for dimensional analysis in a model management

system TEFA, described elsewhere [2].

A number of languages and systems have been uieveloped for mathemat-

ical (particularly. for mathematical programminig) modeling, some of these



are AMPL [121, GAMS [51, SML [13], FW/SM [14], ANALYZE [15], TEFA

[2], LINGO [8], and LPL [18]). This paper was motivated by the need to rep-

resent and manipulate dimensional information [6, 3] in such languages and

systems. Dimensional analysis has several potential applications in mathe-

matical modeling systems [2, 6, 9]. Transformations of units of measurement

are required in model solution and model integration. Dimensional simpli-

fication and verification of dimensional consistency of expressions is useful

in model formulation and model validation. While transformation of units

is straightforward and is supported in various modeling systems, database

systems, and symbolic mathematics systems, automatic dimensional consis-

tency checking and dimensional simplification is found in only a few symbolic

mathematics systems (e.g., Macsyma, Mathematica).

Of course, the concepts of dimensions and the usefulness of dimensional

analysis have been known for a long time. Fourier is credited with establish-

ing the principle of dimensional homogeneity in the 1820s [22], and Bucking-

ham's Pi Thorcim for the identification of dimensionless groups of variables

[7] has been applied in dimensional analysis for several decades.' Dinien-

sional analysis is used in high school physics courses for the derivation and

verification of the laws of nature, and has found recent applications in qual-

itative physics [4]. Sedov [24] discusses dimensions and units with a number

of examples. Wallot [28] presents various dialects for units and dimensions,

and discusses the algebraic and arithmetic relationships between systems of V ,\"

units. Massey [23] provides an excellent practical guide to currently accepted

units of measurement and conversion factors within and across systems of

measurement. The usefulness of dimensional analysis is well recognized and ' Fr
"A&I

exploited in the physical sciences, and in scientific computing systems. Such ,
ced [3

'See [17] for a computer solution of the theorem. iato
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is not the case, however, in management science, and in many model manage-

ment systems proposed for management science modeling.2 We aim to bridge

that gap by presenting a simple numerical method that can be incorporated

in to virtually any modeling system (as has been done in TEFA), database

system, or programming language for the purposes of verifying dimensional

consistency. Further, since many modeling languages do not discuss the rep-

resentation of dimensional information, we also specify a formal language for

representation of dimensional information, which language can be embedded

in most modeling languages (as, again, has been done in the language of

TEFA).

The rest of this paper is organized as follows. We briefly discuss the

concepts of dimensions, units and the laws of dimensional consistency and

arithmetic in §2. We present our method for dimensional arithmetic in §3,

and develop a logic-based language for representing dimensional information

in §4. We conclude with a discussion of the applications and limitations of

our approach (§5).

2 Dimensions and Units of Measurement

The dimension of a numeric- valued modeling variable is defined in terms of

the quantity it measures, and its unit of measurement. Each quantity

has a base-unit of measurement, and several other units, in each of a few

widely accepted systems of measurement. These units are related by laws

of conversion within and across systems of measurement. In the International

Metric System, or "Syst6me Internationale d'Unites" (SI), there are seven

2In fact, studies of modeling practise often reveal examples of models with incorrect
and dimensionally inconsistent expressions.



fundamental3 quantities and base units [1, 231, shown below, and several

other derived quantities and units.

UNITS FOR THE SI SYSTEM OF MEASURES

Quantity Measured Base Unit Other Units

Length Meter (m) Kilometer, Centimeter
Mass Kilogram (kg) Gram, Milligram
Time Second (s) Hour. Minute
Electric Current Anmpere (A)
Temperature 'Kelvin ('I,%) 'Celsius, 'Fahrenheit
Luminous Intensity Candela (cd) Candle-power
Amount of Substance Mole (mol) Kilomole

There are also dimensionless quantities, which have no units (it is useful

to think of this unit as the number 1). In most applications of manage-

ment science modeling it is useful to enrich this vocabulary by introducing

other quantities and units. For example, the quantity money is measured

in dollars, yen, and so on. Other examples of units are barrels-of-oil.

truck-loads, 1985-dollars. The solution we propose is general enough to

apply to such enhanced vocabularies. (It is also unaffected by the choice of

a base unit.) For the purl)ose of this paper, it is sufficient to consider units

of measurement (and to ignore quantities). This is because 1) given a vari-

able's units, we can easily infer the quantity it measures, and 2) information

about units is necessary to verify dimensional consistency of a mathematical

expression. Hence, in the rest of the paper, we will use the words dimension,

dimensional and so on. to refer to units of measurement. However, we need

to make a distinction between fundamental units, and derived units. A
3These are fundamental in the sense that they form a basis for the group of all quantities

and units respectively. There are several bases, but the selection of fundamental quantities
and base units is governed also by convention and convenience.



fundamental unit can not be written as the product of two or more funda-

mental units or their inverses. For example, (using abbreviations) m, km, s,

and kg, are some fundamental units. A derived unit is obtained as a product

of two or more fundamental units or their inverses. For example, kgm2 /s 3 is

a derived unit for Power. A unit is a fundamental unit or a derived unit.

2.1 Laws of dimensional consistency

The laws for obtaining dimensionally consistent (d.c.) expressions are stated

below .4

1. Two functional expressions may be added or subtracted only if they are
dimensionally equivalent (d.e.). (Expressions of the form 0 + ,, 0 - v are
d.c. iff 0 and g, are d.e.)

2. Two functional expressions may be compared for equality or inequality (re-
sulting in a conditional expression) only if their dimensions are equivalent.
(Expressions of the form o =*, 0 < b', O > ', 0 < v', and q 5 i" are d.c.
iff 0 and , are d.c.)

3. Two functional expressions may be multiplied irrespective of their dimen-
sions. (Expressions of the form 0 * V' are d.c.)

4. A functional expression can be reciprocated irrespective of its dimension.
(Expressions of the form 1/0 are d.c.)

5. The exponent of a functional expression must be dimensionless. (Expressions
of the form O ' are d.c. only if V? is dimensionless.)

6. The exponent of a functional expression can be fractional only if a) each
fundamental unit in the functional expression has a power that is a multiple
of the inverse of that fraction, or if b) the functional expression is dimen-
sionless. (Expressions of the form 0 are d.c. if the fundamental units of (0
have integer powers, i.e., ', is an integer, or if 0 is dimensionless, or if each
fundamental unit in ) has a power that is a multiple of 1/b;.)

4The last three laws (5,6,7) might seen to be unreasonable; we will have more to say
about that in §5. These laws are consistent. with observations by several authors about
physical systems and rules for using dimensions [10, 23, 27].
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7. Functions which can be expressed as power series (e.g., trignometric func-
tions, hyperbolic functions) can be applied only to dimensionless expressions.

These laws can be used for dimensional validation of expressions. Note

that such validation requires verification of dimensional equality.

2.2 Laws of dimensional arithmetic

The laws of dimensional arithmetic are slightly different from that of standard

arithmetic, and this difference makes our proposed solution work.

1. The dimension of the sum (or difference) of two expressions is the same as
the dimension of either of them if the two expressions have equivalent dimen-
sions. Otherwise, it is not defined (see laws for dimensional consistency).

2. The dimension of the product (quotient) of two expressions is the prod-
uct (quotient) of the dimensions of the two expressions. A dimensionless
expression has dimension u0 (= 1) which is an identity for dimensional mul-
tiplication.

3. The dimension of the exponent of an expression is the exponent of its di-

mension.

4. Any function of an expression with dimension i0 yields an expression of
dimension 1(.

Note that we still have the problem of establishing dimensional equiva-

lence (in Law I). and of performing dimensional simplification (in Law 2).

3 A Numerical Approach to Dimensional Arith-
metic

We will first restate the laws of dimensional arithmetic in terms of the op-

erators for dimensional addition ( j), subtraction ((:), multiplication (C:),

division ( ), and equality (-). For notational conciseness, we will also use

an exponent iat ion operator. (,rp.



3.1 Laws of dimensional arithmetic, revisited

Let U1, 1 2 , and U be any units. Then

1. U1 ( LU2 = U - UI * U2 * 11

2. U, eU 2  U - U1 ' 112 * U

3. U uo = uo , U - U

4. U uo U

5. U1 C -2 = U[1 * ("2

6. U1 0 U2 - '1/t72

7. exp(U, n) U7" Vn

8. u - uo Vn

9. f(uo) u0 for any other function f.

It is easily seen that these laws meet the requirements for dimensional

arithmetic as stated in §2.2. Note that, exceplt for verification of dimensional

equality, this is now a problem in numeric arithmetic. These laws of arith-

metic and the laws of dimensional consistency are combined to obtain the

following result.'

Proposition 1

Any unit term can be represented as f1, uo" (i > 0) where

S - Ui (Y: ... ,ui anld

O, 1ies

1 "? = - /° 1 2 , .
i>0

5 It follows as well by conceptualizing systems of units as finite Abelian groups [11].



with a suitable choice of a~s (E Z). (For example, power--a derived quantity-has

units kg' C -n K 3 )

It is easy to see, given our laws, that this is indeed the case. Assume it were

not. Then two possibilities exist. The first is that there is some unit term of

the form 05 e ' or 0 ,, where 0 and V,' are in the correct form. However, by

law 1 of dimensional consistency, it follows that 0 -- ?, else we hatve an invalid

expression. But by laws 1 and 2 of dimensional arithmetic, it follows that tilis unit

term collapses to (: which is in the required form. Th~e second possibility is that

some a, is 1101-integral. Bilt that violates law 5 ( for exponents) of dimensional

Conisstency:. Hence the st ated p~rop~osition is true.

3.2 Prime-encoding of Dimensions

Proposition I motivated the encoding of units of measurement as prime nuim-

bers. lWe first speciFY Hils encoding )nd theui d]iscu)ss its implications. Let

{lL, P1 -)~ P2, - - 1 } he ai sequi-ence of thle successive prime numbers, with Po =1.

Thiis 1), 2. ) = :3. pr, 11, and so on. Let v0 . u I. . .,be the various fun-

dameiital uits of measurement with u0 = 1. andl the others inI anly arbit'rary

ordler. WVe encode these units as priniv numbers by sihst itut ing pi for ui for

all i.

Comb~ining Proposit ion 1 and( this encoding. it follows that any unit term

cani be representedl In w~hiat wve will call th Ilene (.r/)oac1 (.-OnIS ftrn? as

F1Jpc, (E Z Vi

F urt her, for' o111 r purv)O,' it is useful to conid(er another form, which wve

call tile positliV( CXIOWOn-nS f0711, in which each unit term x' is represented as

.. ..... I - - -



rlp,*,>o,-,,>0 JI(z)
I-I pf

i >0,6, >0

This is easily obtained from the first form by collecting all the numbers

with negative exponents in the denominator and reversing the sign, and

eliminating those with exponent zero. ji(x) and v(x) are the arithmetic

products of the numbers in the numerator and denominator respectively. It

is equally simple to do the reverse transformation. We find it useful to employ

the first form for our proofs, and the second one in our computations.

3.3 Law of Dimensional Equivalency

First we recall the unique factorization theorem (also called the fundamental

theorem of arithmetic, [21]).

Theorem 1 Un iqu( F'actorization ThPcor in

Let a and b be numbers with prime-power factorizations

k- k

a = p b = 1p
i=0 1=0

Then a = b iff ii = ,'3, for all i.

Our second theorem establishes the law for dimensional equivalency.

Theorem 2 Dimensional Equality - Numcric Equality

Let x and y be any two unit terms in exponent form (either one). Then X -z y

x = y. That is, dimensional equality is equivalent to numeric equality when X and

y are expressed as products of primes.

10



Proof

Consider x and y in the general exponent form. Let x =fli p- and y = fl. p''.

Then x = y implies that -i = 6i for all i (theorem 1). This in turn implies

(by construction) that x and y have exactly the same fundamental units, each

occurring with the same exponent. Hence they are dimensionally equal. The

converse is obvious, i.e., dimensional equality implies numeric equality.

Since the problem of dimensional arithmetic was earlier reduced to that of

verifying dimensional equality and dimensional simplification, we now have

everything that we needed. The laws for dimensional arithmetic, as dis-

cussed in §3.1, can be directly ii plemented since dimensional equality is

easily tested. NI tilt iplicat ion of two unit terms simply involves niult iplicat ion

of the ,'s and the v's and division requires cross multiplication of 1i's and

v's. We thus have a simple algorithm for doing dimensional manipulation.

1. Devise a prime-encoding for the fundamental units in the system.

2. Treat u0 as 1, an identity for multiplication.

3. Compute the dimension of any functional expression in positive exponents
form by performing multiplication. division, addition, subtraction, and ex-
ponentiation as stated below.

4. For diniensional equality of two dlimensions. cross-multiply their p's and v.s

and check for nuimeric equality.

5. Treat dimensional multiplication, division, and exponentiation as numeric
multiplication. division, and exponentiation respectively.

6. For dimensional addition and subtraction, check dimensional equivalency.

11



4 Dimension Representation and Manipula-
tion

In this section we discuss a generic logic-based language, Ldim, for represent-

ing dimensional information and for rules for manipulating this information

(e.g., rules for transformation of units. (We will present Ld,,,, only in part, a

part that meets our requirements in this paper.)

4.1 L-dim

Ldim is a specialized language of first-order logic. It is defined in terms of

the sets C (individual constants). .7 (function constants), and 1? (relation

constants), discussed below.

* C: There is a countable number of individual constants in Ld,,,,. These
include

- a countable number of Systems of Measurement (e.g., SI, English)
which we denote by the symbols

0, S1, • -

- a countable number of Quantities, which we denote by the symbols
qo,ql,q2 ....
For exanipl,, these are Length, Mass, Time, Area, and so on.

- a countable number of Units, which we denote by the symbols

For example, these are Meter, Kilogram, Feet, Foot-Pounds, and
so on. By convention, dimensionless variables have unit n = 1.

- finite-precision numbers 7o,71, 712 ....

Thus the individual constants in Ldi,, are

So, 'SI I qq, q •0,... uou 2 .  Io, nj 712, ....

" _T: The function constants in Ldim are:
4v, eI" ,C x p +,-,*,/,"

The first five are interpreted as the symbols for dimensional arithmetic,
according to laws of dimensional arithmetic. The last five have the usual
arithmetic interpretation.

12



Z 7: The relation constants in Ld,,, are:
-, - base-unit, unit
The first two are interpreted as the symbols for dimensional and numeric
equality respectively. The interpretations for the other relations will be
explained shortly.

The well-formed terms of Ldim include the following:

1. Any fundamental uit is a term, called a unit-term. Any number is a
term.

2. If U, and U' are unit-terins, so are Ui J, Uj and U, P U,, U, 2 , and

3. If 01, 02 are any ternis, so are (p, + 02, - 02, * 02, and 01/02.

For rxample, (m C, (s C. s)), and ((9/5) * 'C + 32) are terms.

4. Nothing else, not allowed by the above, is a terni.

The well-formed formulas (wff's) of Ldim include the following:

1. If 02 and 02 are terms, then Ol = 02 is a wff.
The first rule enables us to declare and infer laws of unit conversion in Ldi,.

For example. (°F = (9/5) * ( + 32). (in = 0.30-18 * ft ), and (ft = 12 * in)
are wff's.

2. If Ol and o2 are unit-terms, then 1 - 02 is a wff.
This rule is concerned with dimensional equality. For example, (mo(s s)
(m CO S) '-; s)) is a wff.

3. If si is a system of measurement, qj is a quantity, ui is any unit, then

unit(si, q1, u2 ) is a wfT, meaning that ui is one of the units used for quantity
qi in system of measurement si.

This rule allows us to declare facts relating units and quantities to systenis of
measurement. For exam ple, unit (SI,Length,m), unit (English, Length, ft),
and unit(English,Power,ft-lb) are wff's.

4. If s, is a system of measurement, qj is a quantity, u, is a base-unit, and
n, is a number, then base-unit(,se,qj,uj, n,) is a wff, meaning that ui is a
base-unit for quantity qj in system of measurement s, and is prime-encoded
with the number ni.

This rule allows us to declare facts relating base units, their prime-encodings,

13



and quanti ties to systems of measurement. For example, base-unit (SI Length,m, 2).
base-unit (English,Length ,ft, 3), and base-unit (SI, Mass,kg, 5) are wff's.

5. Nothing else, not allowed by the above, is a wil.

Of course, not all well-formed terms and formulas are meaningful or true.

For example, km = 10 * m, unit(SI,Length,kg), and m - cm are wff's, but

are not true under the intended interpretation. What matters is that the

required dimensional information can be represented in Ld,,,,. The laws for

conversion of units are well known, and can be stated in Ldin. as shown above.

We need to state as facts only the laws a) for transforming between the base

units used in different systems of measurement for the same fundamental

dimension, and b) for transforming additional units for each dimension in

to the base unit for that dimension. The remaining transformation rules

(e.g., between cm and in) are inferred by transforming first to the base units

(which are detcrmined through the unit and base-unit declarations) using

rules (b), and then using the conversion rules (a) between the base units.

5 Discussion

We have reduced dimensional arithmetic and man ipu lation to numerical

arithmetic by a suitable encoding of fundamental units as primes, and de-

rived units as products of primes. Consequently, and due to theorems 1 and

2, we have a simple and efficient numerical method for dimensional manip-

ulation. Our method behaves as well as a symbolic one in the sense that

it retains information about the symbols it is manipulating (we can recon-

struct the actual units of measurement from the numeric value of the unit).

Being numerical, it is arguably more efficient. Further, it is easy to imple-

merit in almost any programming language (unlike implementing symbolic

I1,



dimensional manipulation in, say, Fortran), making it possible to exploit di-

mensional ananlysis in a wide range of applications. Finally, the approach of

reducing this problem to one of numeric arithmetic may be of use elsewhere

in symbolic computing.

The method works for mathematical modeling applications where the laws

of dimensional consistency, as stated in §2.1, hold. The first four laws are

non-controversial. In laws 5-7, the restriction of exponents (to integers, or

to fractions of a special typ--note, for example. that v/(, where a measues

Ar(a, poses no problem) might appear to be unreasonable. lowever, it

finds support in Fleischniann's conceptlualization of formulas in a physical

system as a muIlti-diinensional vector space [10], in1 which alny uiit terimn can

be written in tim form I' B'- where 13 ,s are units. an( ors are intgfcr,-,

and in his result that dimensions form an Abelian group [11]. We do see

expressions of the form 0' where a is non-i ntegral, but we argue that these are

meaningful only when (b is dnienionless, or it has appropriate units such that

0' has non-fractional fundamental units. In other cases tile ostensible lack

of dimensional consistency arises from the elinintation of certain variables

due to simplification. For example, Massey [23] says that

True, there are careless writers who present terms su,'h as

InI r, where 7' represents a radius, that is a length. It will usually

be found, however, that the In r has arisen from the integration

of dr/r and that tile writer omitted the integration constant.

In such a case the In r term should be ln(r/ro), where -In r

corresponds to the missing constant.

In practice many models are written in a manner that they might seem to

be dimensionally invalid. It seems particularly to be the case in management

15



science models, where declaration of units, and dimensional analysis, is not

common practice. However, a closer examination of the assumptions and

conventions often reveals that that is not the case. Vermeulen [271 discussed

how indiscriminate use and manipulation of dimensional formulas leads to

contradictions (e.g., 1 sec = 3 * 101 cm). He argued that such contradictions

can be avoided by following proper conventions in the use of dimensions and

the style of writing such formulas, by examining the origin and derivation

of the formulas. Perhaps, the enforcement of dimensional validation can aid

the understanding of models (and origins of formulas) and improve modeling

practice (as well as style and documentation). Try 'alidating. for example, 6

an expression iII the well known \Vilson's EOQ model (TC is dollars/yr, D is

item-units/yr. Q is item-units/order, A is dollars/order, I is a percentage/yr,

and C is dollars/item-unit),7

A. D +Q .-C7TC= -- +-.I

Q 2
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